	P. Code: 20CE0111 R20 H.T.No.			
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)			2022
В.10	ech II Year II Semester Regular & Supplementary Examinatior HYDRAULIC ENGINEERING (Civil Engineering)	is Au	gust-	2023
Tin	(Answer all Five Units 5 x 12 = 60 Marks)	Max.	Marl	ks: 60
1	a Derive an expression for discharge through the open channel flow by	CO1	L2	6M
	chezy's constant.			
	b Find the discharge though a circular pipe of diameter 3 m, if the depth	CO1	L3	6M
	of water in the pipe is 1m and the pipe is laid at the slope of 1 in 1000. Take C=70.			
	OR			
2	a Explain the term specific energy of a flowing liquid and derive the condition for critical depth.	CO1	L2	6M
	b Derive the condition for a rectangular channel to be most efficient.	CO1	L2	6M
	UNIT-II			
3	What are assumptions of gradually varied flow? Derive the Dynamic	CO2	L2	12M
	equation of gradually varied flow.			
	OR			
4	a Derive an expression for loss of energy due to hydraulic jump.	CO2	L2	6M
	b A sluice gate discharges water into a horizontal rectangular channel with	CO2	L3	6M
	a velocity of 10 m/s and the depth of flow of 1m. Determine the depth of			
	flow after jump and consequent loss in total head.			
	UNIT-III			
5	a Derive the equation for force exerted by a jet on stationary inclined flat	CO3	L2	6 M
	plate.			
	b Find the force exerted by a jet of water of diameter 75mm on a	CO3	L3	6 M
	stationary flat plate, when the jet strikes the plate normally with velocity			
	of 20m/s.			

OR

- 6 A nozzle of 50 mm diameter delivers a stream of water at 20m/s CO3 L3 12M perpendicular to a plate that moves away from the jet at 5m/s Find
 - (i) the force on the plate
 - (ii) the work done
 - (iii) the efficiency of jet.

UNIT-IV

7 What is centrifugal pump? Explain the parts of centrifugal pump with neat CO5 L1 12M sketch.

OR

8 Explain the different types of hydraulic similarities that must exist between CO6 L2 12M a prototype and its model.

UNIT-V

9 a What is a turbine and give the classification in detail? Give the various CO4 L1 6M efficiencies.

b Explain Radial flow reaction turbine with a neat diagram.

CO3 L2 6M

OR

10 The three-jet Pelton turbine is required to generate 1000 kW under a net CO4 L3 12M head of 400 m. The blade angle at outlet is 15 degrees and the reduction in the relative velocity while passing over the blade is 5%. If the overall efficiency of the wheel is 80 %, Cv=0.98 and speed ratio = 0.46, then find (i) The diameter of jet (ii) Total flow in m 3 /sec and the force exerted by a jet on the buckets. If the jet ratio is not less than 10, find the speed of the wheel for a frequency of 50 hertz/sec and the corresponding wheel diameter.

*** END ***